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Understanding to what extent stem cell potential is a cell-intrinsic
property or an emergent behavior coming from global tissue
dynamics and geometry is a key outstanding question of sys-
tems and stem cell biology. Here, we propose a theory of stem
cell dynamics as a stochastic competition for access to a spatially
localized niche, giving rise to a stochastic conveyor-belt model.
Cell divisions produce a steady cellular stream which advects cells
away from the niche, while random rearrangements enable cells
away from the niche to be favorably repositioned. Importantly,
even when assuming that all cells in a tissue are molecularly
equivalent, we predict a common (“universal”) functional depen-
dence of the long-term clonal survival probability on distance
from the niche, as well as the emergence of a well-defined num-
ber of functional stem cells, dependent only on the rate of random
movements vs. mitosis-driven advection. We test the predictions
of this theory on datasets of pubertal mammary gland tips and
embryonic kidney tips, as well as homeostatic intestinal crypts.
Importantly, we find good agreement for the predicted functional
dependency of the competition as a function of position, and thus
functional stem cell number in each organ. This argues for a key
role of positional fluctuations in dictating stem cell number and
dynamics, and we discuss the applicability of this theory to other
settings.

stem cell dynamics | biophysical modeling | stochastic processes |
mammary morphogenesis | intestinal renewal

Many biological tissues are renewed via small numbers of
stem cells, which divide to produce a steady stream of

differentiated cells and balance homeostatic cell loss. Although
novel experimental approaches in the past decade have pro-
duced key insights into the number, identity, and (often stochas-
tic) dynamics of stem cells in multiple organs, an outstanding
question remains as to whether stem cell potential is a cell-
intrinsic, “inherited” property or, rather, an extrinsic, context-
dependent state emerging from the collective dynamics of a
tissue and cues from local “niches,” or microenvironments (1–
8). Although recent experiments have provided evidence for the
latter in settings such as the growing mammary gland (9), adult
interfollicular epidermis (10, 11), spermatogenesis (12), or the
intestinal epithelium (13), a more global theoretical framework
allowing one to quantitatively interpret these findings is still
lacking.

The case of the intestinal crypt serves as a paradigmatic exam-
ple of the dynamics of tissue renewal and is one of the fastest
in mammals (13). The intestinal crypt consists of a small invagi-
nation in the intestine where the epithelial cells populating the
intestinal walls are constantly produced. The very bottom of the
crypt hosts a small number of proliferative, Lgr5+ stem cells
(14) that divide and push the cells located above them to the
transit amplification (TA) region, where cells lose self-renewal
potential. Cells are eventually shed in the villus a few days later,
constituting a permanent “conveyor-belt” dynamics. Lineage-

tracing approaches, which irreversibly label a cell and its progeny
(3), have been used to ask which cell type will give rise to lineages
that renew the whole tissue and have revealed that all Lgr5+
cells can stochastically compete in an equipotent manner on the
long-term (15–18), but still display positional-dependent short-
term biases for survival (13). Interestingly, similar conclusions
have been reached in pubertal mammary gland development (9),
where branching morphogenesis occurs through the prolifera-
tion of the cells in the terminal end buds of the ducts (19), the
region where the mammary stem cells (MaSCs) reside (9, 20). In
both cases, intravital imaging revealed random cellular motions,
enabling cells to move against the cellular flow/drift defined by
the conveyor-belt dynamics. Moreover, in the intestine, tissue
damage, or genetic ablation of all Lgr5+ stem cells, caused Lgr5–
cells to recolonize the crypts and re-express Lgr5 to function as
stem cells (13), arguing for extensive reversibility and flexibility
in the system (21). In addition, Lgr5– and Lgr5+ cells of the
fetal gut were also shown to nearly equally contribute to intesti-
nal morphogenesis (22). Altogether, this supports proposals that
the definition of stem cell potential should evolve to emphasize,
instead of molecular markers, the functional ability of cells to
renew over the long-term (23, 24).
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However, this definition raises a number of outstanding con-
ceptual problems: What, then, defines the number of functional
stem cells in a tissue? How can short-term biases be recon-
ciled with long-term equipotency? Is there a sharp distinction
between stem and nonstem cells, or is there instead a continuum
of stem cell potential together with flexible transitions between
states? Qualitatively, it is clear that fluctuations and positional
exchanges are needed to prevent a single cell in the most favor-
able position to be the unique “functional” stem cell (defined
as cells whose lineage colonizes a tissue compartment on the
long-term). Incorporating these features in a dynamical model
of stem cell growth and replacement, able to make predictions,
e.g., on the probability of lineage perpetuation, would represent
an important step toward the understanding of how stem cells
operate in the process of tissue growth and renewal.

In this paper, we develop a reaction–diffusion formalism for
stem cell renewal in the presence of noise and local niches, tak-
ing into account local tissue geometry, as well as cell division and
random cell movements (Fig. 1 A–C). Importantly, within this
purely extrinsic and dynamical approach, which does not need
to posit any intrinsic “stem cell identity,” a well-defined num-
ber of functional stem cells emerges, which only depends on the
geometry and a balance between the noisiness of cell movements
and division rates advecting cells away from niche regions. This
model also predicts that stem cell potential should decay contin-
uously as a function of distance from the niche, with a “universal”
Gaussian functional dependence. We test this prediction against
published live-imaging datasets for the homeostatic intestinal
crypt (13) and during the branching of embryonic kidney explants
(25) and find a good quantitative agreement for the full survival
probability of cells, depending on their initial position relative to
the niche. Furthermore, we use our theoretical results to extract
the amplitude of the random positional fluctuations in the devel-
oping mammary gland using static lineage-tracking experiments
(9). This enables us to predict the number of functional stem cells
for this system, finding values consistent with previously reported
estimates.

Dynamics of Tissue Renewal and Development
To develop the model, we first considered the simplest situation
of a one-dimensional column of cells, with a rigid boundary con-
dition at the base (mimicking, for instance, the bottom of the

crypt), so that each cell division produces a pushing force upward
transmitted to the cells above (or, in the case of growing mam-
mary gland or kidney, driving ductal elongation). This model is
motivated by its simplicity, as it is able to qualitatively derive the
essential traits of the complex dynamics studied here. As we shall
see, further refinements, aimed at making predictions for real
systems, considered more realistic geometries. From this simple
dynamics, we defined the number of functional stem cells as the
typical number of cells that have a nonnegligible probability to
produce long-term progenies (without “losing” the competition
against other cells). If the dynamics was fully devoid of noise
(a simple conveyor belt) and all cell divisions were symmetric,
then one of the bottom-most cells would always win the competi-
tion. In the case of a one-dimensional array of cells, this problem
is trivial. If one considers a cylindric geometry, there would be
a single row of functional stem cells, which is the limiting case
of the model described in ref. 16 of symmetric and stochastic
one-dimensional, neutral competition along a ring of equipotent
cells. However, live-imaging studies show that, in multiple set-
tings, including mammary gland (9), kidney morphogenesis (25,
26), and intestinal crypts (13), there is widespread rearrangement
of cells through stochastic cell movements (27). Intuitively, such
rearrangements are expected to increase the number of “func-
tional” stem cells, as rearrangements allow cells away from the
niche to relocate to favorable positions, and would thus provide
a biophysical mechanism for setting the number of stem cells
assumed in models such as that developed in ref. 16.

The simplest abstraction of the system is a one-dimensional
column of N cells. Each cell divides at constant rate kd . In one
dimension, we assumed a rigid boundary at the bottom so that
cell proliferation generated a net flow of cells along the pos-
itive axis, i.e., advection away from the niche. In addition, the
position of the cells can fluctuate stochastically at rate kr (either
via local cell–cell rearrangements, or more global movements of
cells relative to the niche; SI Appendix, sections S1A and S4),
allowing cells far away from the niche to reposition, despite the
overall flow.

At t =0, each cell is characterized by its starting position n
(distance from the niche) and will give rise in time to a lin-
eage denoted cn , which can span the entire tissue. However, as
soon as a cell reaches the position N , it disappears from the sys-
tem, resulting after a sufficiently large time period in a single

DCA B E F

Fig. 1. SCB as a paradigm for stem cell renewal. (A and B) A cell in the epithelial wall of the crypt (A) can duplicate at rate kd , pushing the upper cells
up, creating a conveyor-belt mechanism, or switch its position randomly at rate kr , introducing a stochastic or noisy ingredient in the dynamics (B). (C)
At longer time scales, the lineage of a single starting cell colonizes the whole system. (D) Example of SCB dynamics. At t = 0, we have N = 16 lineages
in the system, depicted with different colors and at starting positions 1, . . . , 16, respectively. In time, lineages are progressively eliminated, but stochastic
cell rearrangements make it possible for a lineage far from the origin (starting position n = 8 in red and highlighted with a dashed circle) to win the
competition. (E) Probability (prob) that a given lineage colonizes the entire system as a function of initial position of its mother cell, decaying as a Gaussian
of width

√
kr/kd ; see Dynamics of Tissue Renewal and Development for details. The width of this distribution defines a functional stem cell region (Ns

cells, highlighted in orange, plotted for kr/kd = 3). (F) Numerical simulations of the one-dimensional SCB dynamics. We compute the long-term survival
probability p(cn) as a function of initial starting position n = 0, 1, 2, . . ., with respect to the base of the system for several values of kr/kd (1, 3.3, 13.3, and 33

in, resp., blue, orange, black, and red). Dots show the outcome of the simulations, and lines show the analytical prediction p(cn)∼ exp{− kd
2kr

n2}, as shown

in Eq. 4. F, Inset shows the plot of best fit for the variance of the numerical distributions (black crosses) against the analytical model prediction ∼
√

kr/kd

(orange solid line).
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surviving lineage. This competitive dynamics can be metaphor-
ically understood as a conveyor belt with random fluctuations
in the cell positions, sketched in Fig. 1 A–C. This is why we
call it stochastic conveyor belt (SCB) dynamics and use it to
model tissue renewal (e.g., intestinal crypt homeostasis) or organ
growth (e.g., kidney and mammary gland morphogenesis). The
only difference between these two general cases is a change
of reference frame (SI Appendix, section S1 and Fig. S1). In
Fig. 1D, we show an example of a typical run of the simulated
SCB dynamics in one dimension, until monoclonality is achieved
(see also SI Appendix, Movies S1–S3 and section S5A for
details).

To make quantitative predictions from the dynamics outlined
above, we start by following the prevalence of a single lineage.
Here, the action of the other lineages can be imposed as an aver-
age drift force that depends on the position of each cell of the
lineage we follow. The equation accounting for the time evolu-
tion of the prevalence of lineage cn , to be referred to as ρn(z , t),
in the continuum limit is:

∂ρn
∂t

=−kd
∂

∂z
(zρn)+

kr
2

∂2ρn
∂z 2

+ kdρn . [1]

We refer to this reaction–diffusion equation (28, 29) as the SCB
equations (see SI Appendix, section S1B for details). The first
term on the right-hand side is a drift term, accounting for the
average push-up movement at position z due to random cellular
proliferation at rate kd at lower levels, ∼ kdz . The second term
is a diffusive term (30, 31), accounting for the random realloca-
tions of cells, occurring at rate kr . The third term is a proliferative
term, accounting for the exponential proliferation of each cell of
the lineage under study, at rate kd .

Considering initial conditions t0 =0, ρn(z , 0), a Gaussian cen-
tered on n with σ2 =1/2 (a density representing a single cell
at position n), and natural boundary conditions, the solution of
Eq. 1 can be approximated by (see SI Appendix, section S1B for
details):

ρn(z , t)≈
√

kd
2πkr

exp

{
− kd
2kr

(
z −nekd t

ekd t

)2}
. [2]

Next, we sought to relate this lineage prevalence to the experi-
mentally relevant quantity of long-term lineage survival; in other
words, how likely is it for a cell starting at a given position n to
take over the entire crypt? Although lineage fixation is a concept
that only makes sense in the discrete description, we observed
that lineage prevalence converges asymptotically toward a simple
scaling form ρn(∞):

ρn(∞)≡ lim
t→∞

ρn(z , t), [3]

which is a constant that does not depend on position z or time
t , but only on the starting position of the lineage. This argues
that, on the long-term, lineages starting at different positions n
and n ′ have well-defined relative prevalence, leading to the natu-
ral assumption that the long-term lineage-survival probability of
lineage cn is proportional to this asymptotic lineage prevalence.
This means that the probability of lineage survival, p(cn), can be
expressed as:

p(cn)≈
ρn(∞)∑
j ρj (∞)

∝ exp

{
− kd
2kr

n2

}
. [4]

The above equation, which is a central result of the study, defines
the probability that a cell starting at position n will “win the com-
petition” and colonize the whole one-dimensional system (see SI
Appendix, section S1 for details).

Despite the approximations outlined above, stochastic numer-
ical simulations of the model system show excellent agreement
with Eq. 4 (Fig. 1 E and F). We also note that, although we have
assumed here that positional rearrangements occur between two
cells, more complex sources of positional noise kr can be consid-
ered (which can be mechanistically dependent or independent
on kd ) and lead to the same qualitative results. These include,
for instance, postmitotic dispersal, as seen during the branching
morphogenesis of the kidney uteric bud (26) and where daughter
cells can travel long distances outside the epithelium postdi-
vision, or correlated “tectonic” movements of the epithelium,
where cells could collectively reposition relative to the niche, as
proposed during mammary or gut morphogenesis (9, 22) (see SI
Appendix, section S4 for details).

Functional Stem Cell Numbers and Dynamics in the SCB
The prediction for the probability of long-term lineage survival
under the SCB dynamics is surprisingly simple, decaying as a
Gaussian distribution as a function of position away the niche,
with a length scale that is simply the amplitude of the stochas-
tic fluctuations divided by the proliferation rate, ∼

√
kr/kd (Eq.

4). Intuitively, cells close to the origin have the highest chance
to win and survive, whereas this probability drops abruptly for
cells starting the competition further away, i.e., around Ns cell
diameters away from the base, with:

N 1D
s =1+

√
kr
kd
. [5]

Note that the first term satisfies the boundary condition that,
in the case kr =0, the system has a single functional stem cell
(located at the base) in one dimension. Eq. 5 thus implies that
multiple rows of cells possess long-term self-renewal potential
(as assessed, for example, in a lineage-tracing assay), emerg-
ing through their collective dynamics, and with a number that
depends only on the ratio of the division to rearrangement rates
(respectively [resp.], kd and kr ). Although Eq. 5 is the outcome
of a one-dimensional approximation, we show that it holds and
can be generalized in more complex geometries (SI Appendix,
section S3). In particular, in a cylindrical two-dimensional geom-
etry, we show that the functional stem cell number would simply
be the same number N 1D

s of cell rows (arising from the SCB
dynamics) multiplied by the number of cells per row (fixed by
the geometry of the tissue). Moreover, the above result can be
generalized, giving an estimate of Ns for general geometries
(see SI Appendix, Eq. 26, where we give the general expres-
sion for Ns in arbitrary organ geometries). This general result
will be at the basis of the forthcoming sections, when dealing to
more realistic geometries to explore the dynamics of the organs
under study. Importantly, our framework generalizes the work
of ref. 16, as we do not fix the stem cell number Ns explic-
itly, which, rather, emerges from an interplay between geometry
and SCB dynamics, together with the competitive dynamics
being qualitatively different in the flow direction (SI Appendix,
section S1).

We now turn to experimental data to test whether the pro-
posed dynamics can help predict the number of functional stem
cells in several organs, as well as the evolution of the sur-
vival probability with the starting position of a clone. Although
the division rate kd is well known in most systems considered,
the stochastic movement rate kr is harder to estimate and can
potentially vary widely, from rather small in intestinal crypts
(13) to large in mammary and kidney tips, with extensive clonal
fragmentation and random cell movements (9, 25).

Predictions on Clonal Dynamics and Survival. Intravital live imag-
ing provides an ideal platform to test the model, as it provides
both knowledge of the starting position of a given cell, as well
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as its clonal time evolution (whereas classical lineage tracing
relies on clonal ensembles obtained from fixed samples). In
small intestinal crypts, different Lgr5+ cells have been predicted
to have very different lineage-survival potential on the short-
term, depending on their position within the stem cell niche,
resulting in an effective number of stem cells smaller than the
number of Lgr5+ cells (13, 32). We thus reanalyzed quantita-
tively this dataset by plotting the survival probability of a clone
as a function of its starting position n (Fig. 2) after a given
time period assumed to be large enough for Eq. 4 to hold.
We then compared this to a two-dimensional stochastic sim-
ulation of the model (see SI Appendix, section 5 for details).
Importantly, we found a good qualitative and quantitative agree-
ment between model and data, with the survival probability
decaying smoothly with the starting position (Fig. 2B). The only
parameter here was kr/kd ≈ 1, which fits well with short-term
live-imaging experiments and the idea of cell division promoting
rearrangements (13).

To back these simulations with an analytical prediction on
stem cell numbers, the details of tissue geometry must be taken
into account (with the number of cells per row i needing to be
estimated and the number of rows participating in the competi-
tion arising as an emergent property from the one-dimensional
model). A good approximation is based on that fact that the
crypt can be abstracted as a hemispherical monolayer with radius
R (measured in units of cell diameter) coupled to a cylindri-
cal region (see SI Appendix, Figs. S1, S3, and S4 and section
S3 for details), so that one can get the number of stem cells,
N 2D

s , as:

N 2D
s ≈ 2πR2

[
1− cos

{
1

R

(
1+

√
π

2

kr
kd

)}]
. [6]

With kr/kd ≈ 1 as above, and estimating R≈ 2 for the radius, our
simple theory then predicts that the number of functional stem
cells should be N 2D ≈ 11, which agrees well with measurements
of ref. 13, as well as inferred numbers from continuous clonal
labeling experiments (32). This is expected, as our model reduces
to the one-dimensional ring model of ref. 16 for low kr/kd .

We then sought to test the model further using a published
dataset on embryonic kidney branching in explants (25). This
has been recently noted to be a highly stochastic process, with
neighboring cells at the start of the tracing ending up either sur-

viving long-term in tips or being expelled to ducts. Moreover, ref.
25 observed extensive random cell intercalations, in addition to
the described mitotic dispersal (26), where cells extrude from
the epithelium postdivision and reinsert at a distance of dc cell
diameters away. Importantly, these processes can still be cap-
tured as an effective diffusion coefficient kr in our framework
(see SI Appendix, section S4 for details). Specifically, know-
ing that the fluctuations may occur at each duplication, and
that they imply a displacement up to dc ≈ 2− 4 cell lengths, we
can estimate that kr/kd ≈ d2

c at the minimum (i.e., discount-
ing other fluctuations). Note that the conveyor-belt dynamics
applies exactly for tip elongation as in crypt: The only differ-
ence is that the reference frame from which the dynamics is
observed changes (see SI Appendix, section S1 and Fig. S1 for
details).

The above observation argues again that noise will play a key
role in kidney-tip cell dynamics. Strikingly, extracting from ref.
25 the probability of survival as a function of distance from
the edge of a tip, we found that the two-dimensional simula-
tions of our model provided again an excellent prediction for
the full probability distribution (Fig. 3), with cells much further
away (compared to the intestinal crypt) having a nonnegligi-
ble probability to go back and contribute. Again, the only fit
parameter was the ratio kr/kd =16, which agrees well with our
estimate of the noise arising from mitotic dispersal. Taking into
account the full two-dimensional geometry as above, and esti-
mating in this case a tip radius of R=3− 5 cells, this predicts
Ns ≈ 90± 10, which could be tested in clonal lineage-tracing
experiments.

These two examples show that the same model of SCB dynam-
ics and its prediction of the master curve for the survival prob-
ability of clones can be used in different organs to understand
their stem cell dynamics and that ratios of relocation to advec-
tion kr/kd can be widely different, even in systems with similar
division rates kd .

Number of Functional Stem Cells in the Developing Mammary Gland.
Next, we sought to test the suitability of the SCB dynamics to
model stem cell dynamics of mammary gland morphogenesis,
where extensive cell movements have been reported within tips
via intravital live imaging (9), with rapid rearrangements occur-
ring on time scales of a few hours (Fig. 4 and SI Appendix,
Fig. S6A). In this case, however, tips cannot be followed for long
enough for survival probabilities to be directly measured as in

A B

Fig. 2. (A) Schema of the self-renewal of the crypt epithelia, showing the origin of the coordinate system at the bottom of the system. (B) The probability
(prob) that a given lineage remains within the system as a function of the starting position after a time lapse against the predictions of the conveyor belt
dynamics for the crypt. Data corresponding to the probability that a lineage remains in the system for the small intestinal crypt, reported in Ritsma et al.
(13), depending on its starting position. The orange line represents the prediction of the SCB dynamics, fitting well the data for kr/kd ≈ 1. Shaded areas
represent the CI (one SD) of the prediction.

16972 | www.pnas.org/cgi/doi/10.1073/pnas.1921205117 Corominas-Murtra et al.
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Fig. 3. (A) Schema of the kidney tip during development. The conveyor-belt dynamics holds; the only difference is the reference frame: Whereas in the
stem cell replacement model of the intestinal crypt, the reference frame is the bottom of the gland, in the kidney and mammary gland, the reference frame
is taken from the newly created ducts. (B) The probability (prob) that a given clonal remains within the system as a function of the starting position of the
mother cell after a given time against the predictions of the conveyor-belt model dynamics. Black circles represent real data points, obtained by counting
the amount of cells of a given lineage remaining in the system [from Riccio et al. (25)]. We observe that the distribution is much broader, fitting well to
the theory for a ratio kr/kd ≈ 16 in kidney, over an order of magnitude larger than in intestinal crypt. The shaded area represents the CI (one SD) of the
prediction.

Figs. 2 and 3 for intestine and kidney, respectively. However,
extensive clonal dispersion has been observed in quantitative
clonal lineage-tracing experiments during pubertal growth (9,
33), and we therefore sought to infer the value of noise from
these experiments (SI Appendix, Fig. S6B).

Turning back to published lineage-tracing datasets, where sin-
gle MaSCs are labeled at the beginning of puberty (3 wk of
age) and traced until either 5 or 8 wk of age, clones in tips dis-
played extensive fragmentation, which is expected to be directly
related to the ratio kr/kd (Fig. 4 C and D and SI Appendix,
Fig. S6 B–D). We thus ran as above two-dimensional simulations
of our SCB dynamics (see SI Appendix, section S5 for details),
using measured values of the tip width and length to set the
geometry. As a metric for clonal dispersion, we then computa-
tionally measured for each labeled cell the distance to its closest
clonal neighbor: For a fully cohesive clone, all cells should be
touching, and the distance to the closest neighbor should be
always one cell diameter. Increasing the value of kr/kd robustly
increased the closest neighbor distance. We then performed the
same measurements in the experimental dataset, both for the
5- and 8-wk time points (Fig. 4 C and D) and also for luminal
and basal cell types separately, given the dominant unipotency of
these cell populations in pubertal development (9, 33–35). We
found highly consistent results in all four cases (average clos-
est distance of around 1.85 cell diameter), which allowed us to
infer a ratio of (see SI Appendix, section S5 and Fig. S6 for
details):

kr/kd ≈ 2− 5, [7]

in mammary gland, emphasizing the importance of considering
stochasticity in the conveyor-belt picture. Indeed, we found that,
with this fitting parameter, the model reproduced well the prob-
ability distribution of closest distances, both at the 5- and 8-wk
time points (Fig. 4 C and D).

In addition to this value, we must again pay attention to the
geometry of the mammary tip, with basal cells forming a two-
dimensional monolayer (similar to the previous cases), while
luminal cells form multiple layers in three dimensions within
the tip. Assuming that the intercalation between cells occurs
mainly at the same layer, the system of luminal cells in the
tip of the mammary gland can be abstracted as R− 1 succes-
sive hemispherical two-dimensional layers. Let us emphasize
the dependence of N 2D , as defined by Eq. 6, on R, writing

N 2D
s ≡N 2D

s (R). In that case, the amount of luminal stem cells
can be inferred as:

N 3D
s =

∑
R′<R

N 2D
s (R′). [8]

Taking the fitted range of kr/kd ∈ (2, 5), together with an esti-
mation of the radius of R=5± 2, Eq. 8 then predicts that a
number of luminal stem cells per tip of N 3D

s =170± 110, in good
quantitative agreement with experimental estimates from lineage
tracing of N exp

s =172± 102 (mean ± SD) (9). For basal cells,
using the same parameters for a two-dimensional monolayer,
Eq. 6 predicts that N 2D

s =37± 11, against empirical observa-
tions reporting an amount of basal stem cells of at least 15 (33),
and N exp

s =93± 76 (mean ± SD) (9). Although the prediction
thus falls in the correct range, the underestimation of basal stem
cell number may be due to the highly anisotropic geometry of
basal stem cells.

Discussion
The main objective of this study was to provide insights to the
question of whether stem cell function is a cell-intrinsic, inher-
ited property, or rather an extrinsic, context-dependent notion
emerging from the collective dynamics of a tissue (2, 3, 7, 8).
To that end, we took a complementary standpoint to the one
based on the classification of molecular markers and their poten-
tial functional role, adopting a purely dynamical/geometrical
descriptions of niches. Combining the two would be a logical
extension for future work. We analyzed stem cell lineage sur-
vival as a purely dynamical process of competition for finite
niche space, taking into account the presence of stochastic cell
rearrangements, cell proliferation, and tissue geometry. This
gives rise to a complex reaction–diffusion process that can be
abstracted as an SCB. We show that survival probability as
a function of starting position away from the most favorable
position adopts a simple universal Gaussian shape, so that a
well-defined number of functional stem cells (i.e., cells which
have a nonnegligible probability of surviving long-term) arises
in the theory, set by tissue geometry and the ratio between ran-
dom reallocation and cell proliferation rates, kr/kd . We applied
this theory to recent live-imaging data tracing stem cell sur-
vival as a function of position in the homeostatic intestinal crypt
and kidney morphogenesis and found good quantitative agree-
ment. We also used the model to infer values of kr/kd from
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Fig. 4. (A) Inferring the relation kr/kd from the clone dispersion using a simulation of the SCB dynamics in two dimensions. The distribution of distances of
the closest neighbors is highly sensitive to the relation kr/kd . Here, we show numerical simulations of fragmentation under increasing (left to right) values
of kr/kd . (B) Growing tips of a developing mammary gland together with sparse lineage-tracing experiments, where a single lineage (yellow here, induced
in 3-wk-old animals) can be observed. Clonal dispersion due to random cell rearrangements is observed. (C) Close-up of three different mammary tips (Left)
and corresponding reconstructions to extract relative cellular positions (Right). The geometry of the end buds can be approximated by a hemispherical
structure connected to a cylindrical one, whose radius can be inferred to be around two to five cell diameters. (D and E) Probability distributions of nearest
distances between clonally related cells in tips (resp., from 5- and 8-wk old mice). Black dots represent experimental data (basal and luminal cells have been
treated together for this analysis, as they do not show different behavior at the level of the dynamics). Orange lines are from two-dimensional numerical
simulations of the SCB model (see SI Appendix, SI Text for details), showing a good fit from kr/kd ≈ 3 for both time points. Error bars represent mean and
SD. Scale bars represent 100 µm (B) and 10 µm (C). Min, minimum.

fixed lineage-tracing experiments in mammary-gland morpho-
genesis and showed that this inference allows us to predict the
typical number of stem cells in this system. Interestingly, the
ratio of noise to advection kr/kd appeared to be an order of
magnitude larger in kidney development as compared to the
intestinal crypt (with the mammary gland being intermediate),
which explained well the widely different number of functional
stem cells observed in each.

Although we have sketched here the simplest source of noise
in cellular movements (random exchange of position in cell
neighbors), our results are highly robust to different types of
microscopic mechanisms and should thus be seen as repre-
sentative of a general class of models for stem cell dynam-
ics with advection and noise. In mammary-gland and kidney
morphogenesis, direct cell–cell rearrangements are observed
(9, 25), while kidney also displays mitotic dispersal (26),
where noise arises from the randomness of cell reinsertion
in the layer after division. Furthermore, on short time scales,
directed cellular movements have been observed in kidney-
tip morphogenesis, with Ret and Etv4 mutant clones being
statistically overtaken by wild-type cells, leading to the pro-
posal that Ret/Etv4 were involved in directional movement

toward tips (25). However, tips maintain heterogeneity in Ret
expression through branching, arguing that cells must shuttle
between high-Ret and low-Ret states (25), which would effec-
tively contribute to movement stochasticity on long time scales.
Finally, “tectonic” movements, which collectively reposition cells
toward/away from niches, can also be captured in the model (SI
Appendix, Fig. S5). These are particularly relevant in develop-
mental settings, such as gut morphogenesis, where the global
shape of the epithelium changes, displacing collectively cells
from villus to crypt regions (22), or upon tip-splitting during
branching morphogenesis (9). Active migration, as observed
in adult intestinal homeostasis (36), could also contribute to
such collective random repositioning events. In the future, it
would be interesting to further understand quantitatively ran-
dom cell rearrangements kr and how they could be modulated
by parameters such as tissue density, aspect ratio, active cell
migration, or division rates (see SI Appendix, section S3C for
details). Mechanical models of cell motility upon rheological
transitions (37–39) or of rearrangements and junctional remod-
eling upon cell divisions (40, 41) in densely packed tissues
could also help to understand quantitatively what sets kr in
each system.
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The proposed framework can, in principle, be applied to any
tissue dynamics in which niche signals and/or cellular prolif-
eration is localized, leading to directional flows (42, 43). On
the other hand, substantial extension of the model would be
necessary in the context of an “open niche,” such as spermato-
genesis (44) or skin homeostasis (11), where renewing cells form
a two-dimensional layer of neutrally competing progenitors,
thus with little in-plane cellular flows. Finally, the theory could
be extended to cases of nonneutral growth. Live imaging of skin-
tumor growth, for instance, is consistent with very low values of
kr/kd (45), as little to no clonal dispersion is observed, which
would tend to favor deterministic growth in our model. Never-
theless, this does not occur, as tumor cells trigger higher prolifer-
ation rates of normal cells (45), resulting in complex geometrical
changes and encapsulation of the malignant clone. Incorporat-
ing these types of complex signaling and geometric feedbacks
between multiple cell populations (46–48) in our model would
thus have particular relevance to understand the dynamics of
tumor initiation (49, 50). Our approach must be taken as part
of a more general enterprise, namely, understanding the role of
both intrinsic cues and complex collective dynamics in defining
the functional stem cells.

Materials and Methods
Additional information on the theoretical, computational, and experimen-
tal methods used can be found in SI Appendix, SI Materials and Methods.
In brief, all mice for mammary-gland experiments were females from a
mixed background, housed under standard laboratory conditions. All exper-
iments were performed in accordance with the Animal Welfare Committee
(Instantie voor Dierenwelzijn) of the Royal Netherlands Academy of Arts and
Sciences (Hubrecht Institute). Clonal dispersion in the developing mammary
tips was measured in whole-mount glands from R26-CreERT2;R26-Confetti
mice, traced from 3 wk of age and killed at midpuberty (5 wk) or at the
end of puberty (8 wk). The length and the width of the tips were mea-
sured, and the coordinates of each labeled confetti cell in the tip were
determined, to calculate the distance between each cell and their closest
neighbor. Raw data used to generate Fig. 4 can be found in SI Appendix,
Dataset S1.
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16. C. López-Garcı́a, A. M. Klein, B. D. Simons, D. J. Winton, Intestinal stem cell
replacement follows a pattern of neutral drift. Science 330, 822–825 (2010).

17. H. J. Snippert, H. Clevers, Tracking adult stem cells. EMBO Rep. 12, 113–122
(2011).

18. A. M. Klein, B. D. Simons, Universal patterns of stem cell fate in cycling adult tissues.
Development 138, 3103–3111 (2011).

19. E. Hannezo et al., A unifying theory of branching morphogenesis. Cell 171, 242–255
(2017).

20. J. E. Visvader, J. Stingl, Mammary stem cells and the differentiation hierarchy: Current
status and perspectives. Genes Dev. 28, 1143–1158 (2014).

21. J. H. van Es, Dll1+ secretory progenitor cells revert to stem cells upon crypt damage.
Nat. Cell Biol. 14, 1099–1104 (2012).

22. J. Guiu et al., Tracing the origin of adult intestinal stem cells. Nature 570, 107–111
(2019).

23. T. Krieger, B. D. Simons, Dynamic stem cell heterogeneity. Development 142, 1396–
1406 (2015).

24. Y. Post, H. Clevers, Defining adult stem cell function at its simplest: The ability to
replace lost cells through mitosis. Cell Stem Cell 25, 174–183 (2019).

25. P. Riccio, C. Cebrian, H. Zong, S. Hippenmeyer, F. Costantini, Ret and Etv4 promote
directed movements of progenitor cells during renal branching morphogenesis. PLoS
Biol. 14, e1002382 (2016).

26. A. Packard et al., Luminal mitosis drives epithelial cell dispersal within the branching
ureteric bud. Dev. Cell 27, 319–330 (2013).

27. S. Rulands et al., Universality of clone dynamics during tissue development. Nat. Phys.
14, 469–474 (2018).

28. N. Britton, Reaction-Diffusion Equations and Their Applications to Biology (Academic
Press, New York, NY, 1986).

29. P. Grindord, The Theory and Applications of Reaction-Diffusion Equations (Oxford
University Press, Oxford, UK 1996).

30. C. W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry and the
Natural Sciences (Springer-Verlag, Berlin, Germany, 1983).

31. N. G. Van Kampen, Stochastic Processes in Physics and Chemistry (North Holland,
Amsterdam, Netherlands, ed. 3, 2007).

32. S. Kozar et al., Continuous clonal labeling reveals small numbers of functional stem
cells in intestinal crypts and adenomas. Cell Stem Cell 13, 626–633 (2013).

33. F. M. Davis et al., Single-cell lineage tracing in the mammary gland reveals stochastic
clonal dispersion of stem/progenitor cell progeny. Nat. Commun. 7, 13053 (2016).

34. A. M. Lilja et al., Clonal analysis of Notch1-expressing cells reveals the existence of
unipotent stem cells that retain long-term plasticity in the embryonic mammary
gland. Nat. Cell Biol. 20, 677–687 (2018).

35. A. Wuidart et al., Early lineage segregation of multipotent embryonic mammary
gland progenitors. Nat. Cell Biol. 20, 666–676 (2018).

36. D. Krndija et al., Active cell migration is critical for steady-state epithelial turnover in
the gut. Science 365, 705–710 (2019).

37. D. Bi, J. H. Lopez, J. M. Schwarz, M. Lisa Manning, Energy barriers and cell migration
in densely packed tissues. Soft Matter 10, 1885–1890 (2014).

38. S. Garcia et al., Physics of active jamming during collective cellular motion in a
monolayer. Proc. Natl. Acad. Sci. U.S.A. 112, 15314–15319 (2015).
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